
1

Robotics With the XBC

Controller
Session 6

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn to use arrays
in IC and download arrays from the
XBC, in addition the student will
learn the basics of the XBC camera
and program a robot to follow a
colored object.

3

Arrays

 Arrays store a list of data.

 All data in the array MUST be of the same
type.

 Every array has a length or the number of
elements it can hold.

 Arrays in C are 0 based – the first array
element is the 0’th element.

 The data stored in the elements of an array
can be set and retrieved in the same manner
as for other variables.

4

Declaring Arrays

 Done like any other variable except
[] enclose the number of array
elements.

void main()

{

int an_array[20];

}

5

Accessing arrays
 Once again, done like any other variable except the

element number is contained in [] behind the variable
name.

void main()
{

int an_array[20];
int position = 4;

an_array[10] = 200;
an_array[position] = 18;

}

6

A short assignment

 Write a short program that does the
following:

 Declares an int array of 30 elements that will
hold the return value of an IR sensor.

 The program loops once a second (hint – use
a for loop) 30 times storing the value of the
IR sensor into the array.

 The program prints all 30 values to the GBA
screen.

7

Solution
int ir_array[20]; // our array will hold 20 values – global to allow uploads

void main()
{
int position; // keeps track of our position in the array

sleep(2.0);
beep(); //beep to let us know we have begun
for(position = 0; position < 20; position ++)
{ // begin counting to 20
ir_array[position] = analog(1); /* assign the current array position the value of

the analog function */
sleep(1.0); // Remember we only take one reading a second!

}
beep();

for(position = 0; position < 20; position ++)
{
printf("Second %d: %d\n", position, ir_array[position]);

}
}

8

Slightly more advanced ways of
declaring and initializing arrays.

 int foo[]= {0, 4, 5, -8, 17, 301};

 Creates an array of six integers, with
foo[0] equaling 0, foo[1] equaling 4,
etc.

 char string[]= "Hello there";

 int k[2][3];

 Two-dimensional array.

9

Uploading Arrays (From the
IC Manual)

 When an executing program is
paused or has finished, IC can
upload the values stored in any
global array via the serial port.

 This permits collecting and recording
data for purposes such as
experimentation or calibration.

 Follow on screen demonstration.

10

XBC Color Vision
 The next 5 slides were adapted from the XBC v2 Getting

Started Guide located at
http://www.botball.org/educational-
resources/ic_manuals.php.

 In color tracking, one selects a rectangular piece of color space
and segments all of the pixels in the image that fall within that
piece.

 Contiguous pixels are combined into blobs.

 Each blob has a size, position, number of pixels, major and minor
axis, etc.

 These blobs correspond to objects seen in the image that are the
desired color.
 Camera resolution is 356X292. 0,0 is the upper left; 356x292 is the lower

right.

http://www.botball.org/educational-resources/ic_manuals.php
http://www.botball.org/educational-resources/ic_manuals.php
http://www.botball.org/educational-resources/ic_manuals.php

11

Color Blobs

 The XBC can segment the image using three

different pieces of color space (each is called a

color model) simultaneously.

 It can track a number of blobs from each color

model.

 It can display the video (raw, processed,

alternating (flashes between raw & processed),

and segmented into blobs) on the GBA display.

12

More on Color Blobs

 A Color Model-HSV specifies a bounding box in the color selection
plane.

 Moving either edge towards the center line constrains the range of
accepted color values to only include more vivid colors (ie only
accept things that are more like Astro Brights paper).

 If everything you want is being accepted but so is a lot of other junk
you don't want, move the corners closer to the center.

ÅMoving either edge towards the edges loosens the model to
include less vivid colors.

ÅMoving the left edge out accepts colors that are closer to
pastel than what is currently accepted.

ÅMove the right edge out accepts darker colors that what is
currently accepted.

ÅMoving the top and bottom edges up and down changes the
range of hues accepted by the model.

13

Trying Out Color Vision

 Turn on the XBC, select Vision with the A

button.

 Select Color Model and then Restore to Default.

 Press B then select Live Video and see what

the camera sees.

 Press B and then select Processed video to see

the image segmented.

 Press B and then select Blob tracking to see

how those segments are broken into blobs.

14

Trying Out Color Vision

 Press the B button and select Color Model and then Modify Model
0.

 Follow the onscreen instructions to modify the color model:

 The start button chooses symmetrical Move or Resize modes for the
box.

 L & R buttons switch you to a corner move (upper left or lower right)
mode.

 The D-pad is used to Move the box, Resize, or move the corners.

 The A button cycles between live, processed, or combined video.

 Do training by.

 Opening up the S and V ranges by moving the side edges outwards.

 Opening up the top and bottom edges as far as they go
(MAX_HRANGE), then moving the whole range up and down until it
includes what you want to accept.

 Then close down the top and bottom edges until they're as close
together as they go before cutting out part of what you want to keep.

 After you have the top and bottom set up well, start moving the side
edges closer to the center until you have cut out everything you want

15

XBC Camera

 Create a color model for channel 0 that sees
something orange.

 Load xbctest.ic onto your XBC.

 Run the program.

 Select the vision test.

 Select the correct channel/model to see orange.

 Follow on screen directions to get data on the
blobs.

 If you like your model, save it to flash.

 For more info, see XBC Camera in IC Help.

16

Controlling the XBC Camera
Programmatically.

 To use the camera in IC you MUST
#use “xbccamlib.ic” at the top of
your program.

 You must call void init_camera ();

before using the camera!

17

Tracking Data

 Tracking data:
 track_update ();

• Gets new tracking information from the camera.
MUST be called for tracking info to update.

 track_is_new_data_available ();

• Returns 1 if new tracking data is available.

 track_get_frame ();

• Returns the current frame number (long)

 track_count (int ch);

• Returns the number of blobs (int) on color channel
ch the camera is currently tracking.

18

Blob Properties…

 int track_size (int ch, int i);

 Returns the size, in pixels, of blob number i on channel
ch.

 int track_x (int ch, int i);

 Returns the x coordinate of the center of blob number i
on channel ch.

 int track_y (int ch, int i);

 Returns the y coordinate of the center of blob number i
on channel ch.

 int track_confidence (int ch, int i);

 Returns the confidence value (0-100) that blob i on
channel ch is the correct color.

• Higher numbers mean better confidence.

19

Enabling and Disabling
Color Channels.

 void track_set_ch_enable(int ch, int val);

 ch = color channel.

 If val = 1 then enable channel.

 If val =0 then disable channel.

 int track_get_ch_enable(int ch);

 Returns 0 if channel ch is disabled, otherwise a 1 in
enabled.

20

An Example
//We must first bring in the camera library

#use "xbccamlib.ic"

void main()

{

init_camera();

while(!b_button()) // Go until we press the b button

{

if(track_is_new_data_available())

{ // is new data available from the camera?

track_update(); // If yes then update the internal data

display_clear();

//Print data for the blob #0 on color channel 0

printf("Size: %d\n", track_size(0,0));

printf("Confidence: %d\n", track_confidence(0,0));

printf("X: %d\n", track_x(0,0));

printf("Y: %d\n", track_y(0,0));

sleep(0.1);

}

}

}

21

Using That Data to Control
a Robot.

 First a new motor control function!
 void move_at_velocity (int m, int vel)

 a.k.a - void mav(int m, int vel)

 Moves motor m at velocity vel

 Similar to the void motor (int m, int p) function

but uses the internal BEMF motor encoders to move the

motors at a specified velocity.

 The velocity range is -1000 to 1000 ticks per second.

22

Proportional Control Using
the Camera.

 The X resolution is 356 pixels.
 Center at 176.

 We need to scale the return from the
track_x function to control our motors.
 Good approximation is.

• 400+5*(track_x(0,0)-176);
• Left motor velocity.

• 400+5*(176-track_x(0,0));
• Right motor velocity.

 Camera is far more powerful than what
we have learned tonight. More advanced
camera functions coming!

23

Tonight's Challenge

 Use what you have learned tonight
to cause your robot to do the
following:
 Track and follow a colored object on

channel 0.

 Assume the largest object it sees is
object 0.

 The robot should stop when the object
is above a certain size.

24

Getting Started…
void main()

{

init_camera();

while(1)

{

Call your track_object function IF track_size is less than
a certain size AND (&&) track_confidence is greater
than a certain confidence level.

}

}

void track_object()

{

int left_vel;

int right_vel;

Compute and assign your velocities to the mav function

}

25

#use "xbccamlib.ic"

void main()

{

init_camera();

while(1)

{

track_update();

if ((track_size(0,0) < 10000) && (track_confidence(0,0) > 25))

track_object();

else ao();

}

}

void track_object()

{

int left_vel;

int right_vel;

left_vel = 400+5*(track_x(0,0)-176);

right_vel = 400+5*(176-track_x(0,0));

mav(2, left_vel);

mav(0, right_vel);

}

